Monday mornings are my fave : ) #not Exploring the Automatic Recognition of Irony in English tweets
نویسندگان
چکیده
Recognising and understanding irony is crucial for the improvement natural language processing tasks including sentiment analysis. In this study, we describe the construction of an English Twitter corpus and its annotation for irony based on a newly developed fine-grained annotation scheme. We also explore the feasibility of automatic irony recognition by exploiting a varied set of features including lexical, syntactic, sentiment and semantic (Word2Vec) information. Experiments on a held-out test set show that our irony classifier benefits from this combined information, yielding an F1-score of 67.66%. When explicit hashtag information like #irony is included in the data, the system even obtains an F1-score of 92.77%. A qualitative analysis of the output reveals that recognising irony that results from a polarity clash appears to be (much) more feasible than recognising other forms of ironic utterances (e.g., descriptions of situational irony).
منابع مشابه
Exploring the Impact of Pragmatic Phenomena on Irony Detection in Tweets: A Multilingual Corpus Study
This paper provides a linguistic and pragmatic analysis of the phenomenon of irony in order to represent how Twitter’s users exploit irony devices within their communication strategies for generating textual contents. We aim to measure the impact of a wide-range of pragmatic phenomena in the interpretation of irony, and to investigate how these phenomena interact with contexts local to the twee...
متن کاملNIHRIO at SemEval-2018 Task 3: A Simple and Accurate Neural Network Model for Irony Detection in Twitter
This paper describes our NIHRIO system for SemEval-2018 Task 3 “Irony detection in English tweets.” We propose to use a simple neural network architecture of Multilayer Perceptron with various types of input features including: lexical, syntactic, semantic and polarity features. Our system achieves very high performance in both subtasks of binary and multi-class irony detection in tweets. In pa...
متن کاملAutomatic Face Recognition via Local Directional Patterns
Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...
متن کاملAn Empirical, Quantitative Analysis of the Differences Between Sarcasm and Irony
A variety of classification approaches for the detection of ironic or sarcastic messages has been proposed in the last decade to improve sentiment classification. However, despite the availability of psychologically and linguistically motivated theories regarding the di↵erence between irony and sarcasm, these typically do not carry over to a use in predictive models; one reason might be that th...
متن کاملValenTo: Sentiment Analysis of Figurative Language Tweets with Irony and Sarcasm
This paper describes the system used by the ValenTo team in the Task 11, Sentiment Analysis of Figurative Language in Twitter, at SemEval 2015. Our system used a regression model and additional external resources to assign polarity values. A distinctive feature of our approach is that we used not only wordsentiment lexicons providing polarity annotations, but also novel resources for dealing wi...
متن کامل